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Abstract. We report on the wetting behavior of phospholipid membranes on solid surfaces immersed in
aqueous solution. Using fluorescence microscopy, the spreading velocity of fluid bilayers advancing from a
lipid source is investigated. The kinetic spreading coefficient was measured as a function of temperature for
pure DMPC membranes and as a function of charge density and cholesterol content for binary membranes.
A theoretical model for the membrane flow is presented, which takes into account the liquid crystalline
bilayer architecture of the lipid membrane. The spreading power results from the membrane-solid VdW
interaction and is dissipated in hydrodynamic shear flow as well as by inter-monolayer friction within
the bilayer. The frictional drag causes a dynamic tension gradient in the spreading membrane, which is
manifested by a single exponential decay of the fluorescence intensity profile along the spreading direction.
Obstacles are shown to act as pinning centers deforming the advancing line interface. However, no depinning
was observed, since the centers are circumflown without abrupt relaxation.

PACS. 68.10.Gw Interface activity, spreading – 68.45.Gd Wetting – 87.16.Dg Membranes, bilayers and
vesicles

1 Introduction

Substrate supported lipid membranes are a fascinating ap-
proach to biofunctionalize solid surfaces [1–4]. The phos-
pholipid bilayer provides the natural host and binding ma-
trix for an abundance of membrane proteins. The fixation
of membrane proteins to a solid support is desired in many
biotechnological as well as scientific applications for de-
tection or imaging of the biomolecules and their ligands.
Hence it is a reasonable strategy to deposit lipid mem-
branes on solids to begin with and to incorporate func-
tional assays therein. A variety of chemical approaches
for membrane-solid coupling have been developed includ-
ing silanes [3], alkylated polymer film [5] and thiolipids
[6–8]. However, one physical technique, which has been
successfully applied over many years is vesicle fusion [1].
The technique has the advantage of being easy to apply
and to deliver membrane proteins by use of proteolipo-
somes [4]. On the other hand, vesicle fusion embarges the
danger of producing ill-defined surfaces [9,10]. The mo-
tivation of the present paper is to investigate the forces
and frictional mechanisms between lipid membranes and
solids, which determine the formation of a continuous bi-
layer following vesicle fusion.

The construction of a continuous planar membrane via
vesicle fusion is generally believed to follow three steps
[9–11]: (i) adhesion, (ii) rupture and (iii) spreading of
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the vesicle membrane. The approach and adhesion of the
vesicles is governed by well known colloidal interactions.
For example the adhesion can be enhanced using lipids
that are oppositely charged with respect to the solid sur-
face. The rupture of vesicles depends on the lipid com-
position as well as the size distribution and area/volume
constraints [12]. Here sonication helps to homogenize and
reduce the size of the vesicles. The final step, however, the
spreading, redistribution and lateral healing of ruptured
membranes on the solid surface has been given little atten-
tion so far. The redistribution of lipid on a solid surface
can be regarded as a “wetting” phenomenon. This fact
was demonstrated by membrane spreading experiments
using reflection interference microscopy [10]. The bilayer
was shown to propagate in form of single bilayer sliding
or in form of rolling membrane lobes, whereby only the
sliding motion led to a continuous supported membrane.

In this article we describe the kinetics of lipid mem-
brane spreading on a larger class of surfaces, including
smooth hydrophilic surfaces like glass, silicon wafers or
mica and rough polymer coated surfaces. The spreading
coefficient was measured as a function of temperature,
charge density and cholesterol content of the lipid mem-
brane. Models for the frictional coupling to the substrate
are proposed and the influence of pinning centers on lipid
spreading is described. Ultimately we put forward the con-
cept of a “self-healing membrane”, which is a thermo-
dynamic stable substrate supported membrane formed in
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the case of complete wetting on defect free surfaces. A bet-
ter understanding of the wetting behavior relates to the
formation and stability of supported membranes and is of
importance for endeavors to design microstructured sup-
ported membranes [13,14] or electrical impedance mea-
surements on supported membranes [15,16].

2 Theory of lipid bilayer spreading

Let us consider phospholipid that is deposited in dry, crys-
talline form on a hydrophilic solid surface. If the substrate
is immersed in water, the phospholipid rapidly hydrates
into a lamellar liquid crystalline aggregate. At the same
time a single lipid bilayer spreads out to cover the bare wa-
ter/solid interface. Figure 1a demonstrates the spreading
of phospholipid on an oxidized silicon wafer. The mem-
brane is doped with a small percentage of fluorescently la-
beled lipid in order to visualize the molecularly thin film.
At the left side of the micrograph we see the overexposed
lipid pool with a homogeneous spreading layer in front.
The advancing membrane may be recognized as the edge
of the weakly fluorescent layer reaching to the right side
of the figure. Note that not the bright fingers, but the
leading edge are the focus of the spreading experiment.
The weakly fluorescent film corresponds to a single bi-
layer, which on hydrophilic surfaces slides forward on a
thin lubricating hydration layer [10]. It is reasonable to
assume that the leading edge of the spreading bilayer is
closed by a micellar-like rim as illustrated in Figure 1b.

The lipid source can be considered a stratified droplet
composed of incompressible two-dimensional fluid layers
(see Fig. 1b). For the analogous case of multilayered smec-
tic liquid crystals, it was noted by de Gennes and Caz-
abat that spreading occurs in a way, that only the layer
adjacent to the substrate advances, while all other lay-
ers retract [17]. The classical view of a droplet with a
macroscopic contact angle, however, is not applicable for
membranes, since the spreading membrane exhibits an
intrinsically constant thickness, dm. Moreover, in con-
trast to a common wetting problem, where a well-defined
three phase contact line exists, the membrane is fully sur-
rounded by aqueous solvent at any instant. The advancing
membrane remains separated from the solid surface by a
thin water layer due to short range hydration forces. In
the absence of interfacial energies the spreading power is
determined by long range forces, Π(z) from the solid (e.g.
van der Waals). The gain in free energy per unit area is the
difference in the free energy, FMS between membrane and
solid and the membrane-membrane energy FMM within
the lipid stack:

S = FMS − FMM ≈

∞∫
dh

ΠMS(z)dz. (1)

For most practical cases the spreading power of a one-
component membrane can be approximated by the ad-
hesion energy between the membrane and the substrate,
which is given in equation (1) as the integral over the
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Fig. 1. (a) Fluorescence micrograph of phospholipid spreading
on an oxidized silicon wafer under water. The advancing mem-
brane is seen as a homogeneous fluorescent field with straight
interface line at the right side. On the left side some addi-
tional membrane loops spill out of the source. (b) A schematic
drawing of a lipid bilayer sliding on a thin water film across a
hydrophilic solid surface.

disjoining pressure from the equilibrium hydration layer
thickness dh to infinity.

The kinetics of membranes spreading from a lipid
source with a straight edge can be treated as a one-
dimensional problem. Let us denote the distance from the
source to the leading edge of the spreading bilayer L(t).
It is reasonable to assume that the total spreading power
S [J/m

2
] will be homogeneously and isotropically dissi-

pated over the length L(t). The interfacial shear stress
per unit length generated at the spreading front is bal-
anced by a dragging force f = γsv(t) per unit area of the
membrane and hence:

S = γsL(t)v(t). (2)

Here γs [Ns/m
3
] denotes the drag coefficient and v(t) =

d/dtL(t) the spreading velocity. We can integrate equa-
tion (2) and obtain the spreading velocity v(t):

v(t) =

√
S

2γst
=

√
β

t
(3)
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Fig. 2. Schematic sketch of the four modes of bilayer mo-
tion discussed in the text. (a) Hydrodynamic sliding of a
single bilayer, (b) internal rolling with monolayer-monolayer
slip (c) lateral shear flow around an embedded pinning center
(d) rolling of a double bilayer lope. Note that the last type of
spreading motion is topological distinct from types (a–c).

where we define β = S/2γs as the velocity determin-
ing, kinetic spreading coefficient for this particular kind
of spreading behavior [10].

In the following we derive the drag coefficient for three
dissipative processes as schematically illustrated in Fig-
ure 2: (a) hydrodynamic slip (b) interbilayer dissipation
and (c) lateral shear friction at obstacles. In the first
case (a) the bilayer may be regarded as a rigid plate and
the drag coefficient is simply given by the linear hydrody-
namic shear flow:

γh = η/dh. (4)

Here dh denotes the thickness of the lubricating hydra-
tion layer and η the viscosity of water. The second case,
the interlayer dissipation (b) is properly modeled by a vis-

cous drag coefficient bs = Σ/v±, with Σ [N/m
2
] being an

applied shear stress and v± the velocity difference of the
upper and lower monolayer [18]. Since in a rolling mo-
tion the relative monolayer velocity is twice the spreading

velocity v± = 2vb the drag coefficient for inner bilayer
rolling is simply:

γb = 2bs. (5)

Processes (a) and (b) may be superimposed. At constant
shear stress the velocities of the inner bilayer rolling and
sliding add up, v(t) = va+vb and the total drag coefficient
γs is given by:

γ−1
s = γ−1

h + γ−1
b . (6)

So far the bilayer slipped or rolled in a constant flow field.
However the membrane-substrate separation distance dh

might vary on real surfaces due to surface roughness. As
a consequence of inhomogeneities shear flow will be gen-
erated in the plane of the membrane. While we leave the
complete analysis of this problem to future work, we can
treat the simple case of a small number of pinning centers
(Fig. 2c). Let us consider a dilute concentration, c, of pin-
ning centers per area, that pinch through or are attached
to the membrane with a disk-like area of diameter aA.
The pinning centers may be regarded as cylinders which
are dragged through the bilayer. The drag coefficient can
be derived from the known self-diffusion constant, DL, of
the lipid molecules themselves modelled as cylinders with
diameter aL. Using the well-known Saffmann-Delbruck ex-
pression and assuming aA � aL we estimate the friction
γp due to embedded pinning centers:

γp ≈
kBT

DL
c ln

(
aA

aL

)
· (7)

The in-plane and out-of-plane frictional coefficients can
be approximately added to yield a total drag coefficient
γtotal ≈ γp + γs. Any of the three modes of motion may
dominate under given circumstances. Let us compare the
drag coefficients for one example of a DMPC bilayer on
a flat substrate with dh = 10 Å und a concentration
c = 1 µm−2 of pinning centers. From micropipette and flu-
orescence recovery experiments on fluid DMPC bilayer it
is known that bs = 3×107 N s/m

3
and DL = 10 µm2/s [18,

19]. Hence with η(water) = 10−3 kg/sm we finally have

γh = 106 N s/m3, γb = 6 × 107 N s/m3 and γpinning ≈

103 N s/m
3

using equations (4, 5, 7), respectively. We may
conclude that in this case the drag of pinning centers can
be neglected. According to equation (6) the hydrodynamic
drag dominates for any realistic thickness of the hydra-
tion layer dh > d∗ = η/2bs ≈ 0.3 Å as long as hydrody-
namic slippage occurs. Note that this estimate for d∗ is
purely theoretical and that the real cross-over from hy-
drodynamic slip to bilayer rolling will be determined by
the critical spacing down to which the hydrodynamic flow
is appropriately described by equation (4). The limits of
the hydrodynamic model is best explored experimentally.
Hence for bilayer spreading experiments a useful distinc-
tion can be drawn between the sliding (slip) and inner
bilayer rolling (non-slip) condition with the measurable
spreading coefficient given by:

β = Sdh/2η sliding, (8a)

β = S/bs rolling. (8b)
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Finally a topologically distinct form of membrane motion
exists that is shown in Figure 2d. A double bilayer lope
can roll forward in a tank thread-like motion. The obser-
vation and analysis of this motion has been made previ-
ously [20]. It was found that the velocity for the straight
interface geometry is constant v = 2S/πbsdm with the fric-
tional force most likely being determined by interbilayer
slip at the bent leading edge. The sliding of a single bi-
layer and rolling of double-bilayer fingers compete in every
spreading experiment and may be found to coexist, if the
resulting spreading velocities are comparable.

3 Experimental section

3.1 Substrate cleaning

Glass cover slides were purchased from Zefa (Munich,
Germany). Silicon wafers with 150 nm oxide layer were
kindly provided by Wacker (Burghausen, Germany). All
substrates were carefully cleaned twice by ultrasonication
for half an hour in a detergent solution (2 % Hellmanex,
Hellma, Germany), subsequently thoroughly rinsed and
ultrasonicated in pure millipore water at 40 ◦C. Finally
the substrates were dried in an oven at 90 ◦C.

3.2 Membrane preparation

All lipids were obtained from Avanti Polar Lipids (Birm-
ingham, Al). Texas Red DHPE (582/601), BODIPY phos-
pholipid (581/591) and BODIPY fatty acid (542/563) was
delivered from Molecular Probes (Eugene, OR). If not
mentioned otherwise the lipids were dissolved in chlo-
roform at a concentration of 1 mg/ml and mixed with
0.02 mol % Texas Red DHPE. The lipid/chloroform so-
lution was deposited on the edge of a Teflon block and
dried over night in vacuum. Before the experiment, lipid
was transferred by imprinting (smearing) lipid from the
Teflon block on to the substrate. Care was taken to ob-
tain lipid deposits with straight edges. The sample was
then mounted in a temperature controlled chamber. Af-
ter half an hour for equilibrating the temperature in the
dry chamber the spreading process was started by adding
water of equal temperature.

3.3 Polymer films

Ultrathin dextrane films were chemically grafted to the
glass surface coated with epoxylated silanes as previously
described [21]. The dextrane films have thicknesses be-

tween 2 Å and 30 Å in the dry state and between 600 Å
and 800 Å in the fully hydrated state as measured by
ellipsometry. Regenerated cellulose layers were prepared
from monolayers of hairy rods by Langmuir Blodgett tech-
nique [5]. In the experiments on dextran and cellulose films
lipid was not deposited from a chloroform solution, but
rather put in dry, crystalline form onto the substrate.
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Fig. 3. A log-log plot of the spreading velocity as a function of
time for different surfaces: silicon wafer (N), glass (�), dextran
coated glass (♦) and cellulose coated glass (•). The velocities
follow a power law v = (β/t)1/2. The straight lines are best fits
with slope −1/2.

3.4 Image acquisition and processing

In the case of fluorescence microscopy the spreading front
was observed with a Zeiss Axiovert 135-TV (Zeiss, Jena,
Germany) using a Plan Neofluar 10× (NA 0.3) and a 40×
(NA 0.75) objective, high pressure mercury lamp HBO 100
(Osram) and a Zeiss dicroic filter set (FT00). Fluorescence
images were taken with a 12 bit digital CCD-Camera (Mi-
croMax, Princeton Instruments, Trenton, USA). The ve-
locity of the spreading front was determined using IPLab
software (Signal Analytics Corporation, Vienna, Austria).

The spreading experiments on polymer films were car-
ried out on glass with an optical interference coating,
MgF2/SiO2 (63 nm/25 nm). In this case the spreading
front was imaged using reflection interference microscopy
as described previously [10,22].

4 Results and discussion

4.1 Spreading kinetics

The spreading kinetics of fluid membranes were measured
for various hydrophilic surfaces. Figure 3 shows the flow
velocities of DMPC on glass, silicon wafer, regenerated
cellulose and dextran layers respectively. The velocities
are plotted in a log-log presentation as a function of time.
Independent of the nature of the surfaces the velocities
decreases with the power law dependence predicted by
equation (2). The straight lines in the log-log representa-
tion are best fits with slope −1/2. The resulting prefactors,
the kinetic spreading coefficients, β are listed in Table 1.
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Table 1. The kinetic spreading coefficient of DMPC at T =
30 ◦C.

spreading coefficient [µm2/s]

cover glass 26± 3
silicon waver 37± 5

mica 43± 5
cellulose 5.2± 0.5
dextran 6.5± 0.5

Let us assume that the spreading coefficients are de-
scribed by the bilayer sliding model. In the case of glass
surfaces we know from neutron reflectivity measurements
that the thickness of the water film between supported
DMPC membranes and glass is dh ≈ 20 Å [23]. It is in-
structive to estimate the spreading power S = dh/2βηh ≈
10−4 J/m

2
in this case with the measured spreading coef-

ficient β ≈ 30 µm2/s. The order of magnitude of S is in
good agreement with the expected adhesion energy due to
van der Waals interaction:

WVdW = −
AH

12π

1

d2
(9)

which for dh = 20 Å is WVdW = 0.7 × 10−4 J/m2 given

a Hamaker constant AH = 10−20 J/m
2

[24]. Hence the
spreading rates are well described by the spreading law
equations (8a, 1). In agreement with this model simi-
lar spreading coefficients are observed for DMPC on the
chemically related glass, silicon wafer and mica surfaces
(see Tab. 1).

The sliding model may furthermore be applied to lipid
membrane spreading on tethered polymers. We have cho-
sen hydrophilic polymers which do not interact with the
lipid membrane specifically but keep the membrane fur-
ther away from the solid due to the repulsive steric force
of the random polymer coils. To first approximation in
a dilute polymer mesh the VdW and hydrodynamic in-
teraction is little affected. Hence the spreading coefficient
β ∼ WVdW dh/ηeff ∼ AH/ηeff dh depends inversely pro-
portional on the membrane substrate separation distance.
The observed spreading rates would then be in agreement
with an estimated 100 Å membrane-solid separation.

4.2 Temperature dependence of spreading

In order to find further quantitative proof for equa-
tion (8a) we performed experiments as a function of tem-
perature and as a function of charge density. A substan-
tial increase in the spreading coefficient with temperature
is found even in the small temperature range accessible
for spreading experiments. Figure 4a depicts the values
for DMPC on glass (white dots) and silicon wafers (black
dots). The increase in the spreading coefficient is linear
within the accuracy of the experiment. The dashed line
represents a linear fit with thermal coefficient

α =
1

β0

∂β(T )

∂T
= 0.06 K−1 (10)
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Fig. 4. (a) Dependence of the kinetic spreading coefficient β
of a DMPC membrane on the temperature. The straight line
indicates a linear fit. (b) The kinetic spreading coefficient as
a function of the molar fraction of a cationic lipid additive at
T = 35 ◦C. The full line is added to guide the eye.

where we set β0 = β (28 ◦C). Within the sliding model the
temperature dependence must be due to a change in the
water viscosity, the membrane substrate separation dis-
tance or the spreading power. The strongest temperature
dependence is expected to stem from the water viscosity
η(T ). The predicted linearized thermal coefficient corre-
sponding to the bulk viscosity of water is αη = 0.03 K−1

and accounts only for half the observed effect. We specu-
late that the stronger temperature dependence is due to
partial structuring of water in the hydration layer lead-
ing to a higher temperature dependence than reported for
bulk water.



340 The European Physical Journal B

4.3 Spreading of charged membranes

We performed experiments on binary membranes com-
posed of neutral phospholipids (DMPC) and cationic
lipids (DMTAP), which are electrostatically attracted to
the negatively charged glass surface. The simple spreading
law, equation (8a), predicts that the spreading coefficient
might rise with increasing adhesion energy. Figure 4 shows
the measured spreading coefficients as a function of mol
percentage charged lipid. To our surprise the spreading ve-
locity drops by a factor of 2 and remains almost constant
for charge fractions larger than 3 %.

It is idle to discuss the sliding model in great detail
without knowing the change in the water layer spac-
ing. However we like to point out that a binary mem-
brane is free to redistribute its components. The spread-
ing power can no longer be approximated by an adhesion
energy alone, but contains entropic terms of demixing.
As described recently in a seminal paper on the adhe-
sion of cationic vesicles to anionic substrates, the regu-
lated charge redistribution of the mobile cationic lipids
has dramatic consequences and leads in particular to the
failure of the classical Young-Dupré law [25].

Interestingly we observe a transition from a linear to a
constant spreading regime at a lipid charge density, which
exactly corresponds to the surface charge of glass. For
equal but opposite charge densities the classical Poisson
Boltzmann theory predicts the maximum adhesion [26].
For charge densities of the membrane exceeding the sub-
strate charge density a constant spreading power inde-
pendent of the mol fraction cationic lipid in the mem-
brane is predicted due to charge regulation at the leading
edge [25]. The fact that the spreading coefficient decreases
rather than increases with higher mol fraction cationic
lipid might be explained by the fact that the membrane
substrate spacing decreases beyond the limit of the simple
hydrodynamic model.

4.4 Imaging the tension gradient

We observed that the fluorescence intensity profile along
the spreading direction showed enhanced fluorescence at
the leading edge of the membrane in all experiments,
where a Texas Red DHPE lipid label was used. As shown
in Figure 5a the intensity is well fitted by a single expo-
nential decay at all times:

I(x, t) ∼= I0 exp(−x/λ) + const. (11)

The exponential intensity profile was found to be indepen-
dent of the substrate and the lipid composition.

The enhanced fluorescence at the leading edge of the
membrane is rather surprising. One might expect on the
contrary that the bulky fluorophore is retarded by hy-
drodynamic forces. In the following we propose a steady
state model, that assumes that the fluorescence label ex-
periences elastic forces due to a small density gradient in
the sliding membrane. The hydrodynamic shear flow be-
tween the lipid membrane and the solid causes shear stress
which acts on the lower side of the membrane. This shear

stress is balanced by an elastic tension, σ [N/m], at each
point. At the leading edge this elastic tension must equal
the spreading power. Hence in a dynamic spreading ex-
periment the internal membrane tension is not constant
but rather decreases linearly from the leading edge to the
lipid pool:

σ(x, t) = S
x

L(t)
for 0 < x < L. (12)

The membrane tension causes an area dilation dA/A =
σ/K with K being the lateral area compressibility of the
fluid lipid membrane. We assume that the fluorescently
labeled tracer molecules prefer a lower lipid density with
energetic advantage Φ = ε dA/A. Hence an elastic poten-
tial is given by:

Φ(x, t) = ε
σ

K
=

εS

KL(t)
x (13)

where ε denotes the coupling constant. In a steady state
the lipid will redistribute in a stable profile and the fluo-
rescence intensity is accordingly proportional to the Boltz-
mann distribution:

I(x, t) = I0 exp

(
−Φ(x, t)

kT

)
= I0 exp

(
−x

λ

)
(14)

with:

λ =
KkT (βt)

1/2

εS
· (15)

This model is supported by two experimental observa-
tions. First of all the predicted time dependence of the flu-
orescence decay length was verified as shown in Figure 5b.
Secondly, we tested different fluorescence labels and found
that each fluorescence label follows equation (14) but with
different coupling constants ε. As shown in Figure 5c
Texas Red labeled DHPE showed the strongest segrega-
tion, while BODIPY chain labeled PC exhibited a reduced
tendency to redistribute. Most interestingly BODIPY la-
beled fatty acid revealed a reversed fluorescence distribu-
tion indicating that the relatively small amphiphile prefers
areas of high lipid density.

It is worthwhile to calculate the typical area dilation.
Using K = 0.14 N/m [27] and S = 10−4 J/m

2
we obtain

α = 10−3 Hence from the measured decay length λ(t)
we conclude ε ≈ 104 kT for Texas Red DHPE. This value
might appear extremely large. However it has to be looked
at with respect to the chemical potential difference of lipid
monomers in the bilayer and in bulk water. The hydropho-
bic effect is larger by more than a factor 4. We conclude
that Texas Red DHPE might indeed be a very sensitive
sensor for density variations within the lipid membrane.

4.5 Effect of cholesterol

Besides phospholipids cholesterol is the most abundant
component in natural membranes. In the following we de-
scribe the wetting behavior of DMPC-cholesterol mixtures
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Fig. 5. (a) Time sequence of the advancing lipid bilayer and the corresponding intensity contour plots. The fluorescence intensity
is enhanced at the leading edge of the membrane and decays exponentially towards the lipid source. (b) Scaling of the decay
length, λ, with time. The straight line indicates slope 1/2. Three spreading experiments of DMPC on glass (�,�) and on silicon
wafer (N) at T = 30 ◦C are shown. (c) Intensity profile for three different fluorescence labeles (A) Texas Red DHPE (B) chain
labeled BODIPY phospholipid and (C) BODIPY fatty acid. The dyes are distinct in their headgroup to chain volume ratio.
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Fig. 6. (a) The kinetic spreading coefficient β of DMPC on
glass decreases with increasing cholesterol content and exhibits
a transition from sliding to rolling. (b) Fluorescence image of
the spreading front for 4 mol % cholesterol (sliding regime).
(c) Three micrographs as a function of time 7 min, 36 min,
62 min for a DMPC-cholesterol (1:1) membrane on glass. The
lipid bilayer fingers on top of the advancing single bilayer slowly
fuse into the underlying membrane.

on glass. As shown in Figure 6a the measured spreading
behavior can be distinguished in three regimes as a func-
tion of increasing cholesterol content. At low cholesterol
content bilayer sliding is observed with the spreading coef-
ficient decreasing monotonously by more than a factor 10
(see also Fig. 6b). The minimum spreading coefficient is
reached at about 10 mol %, where a second regime of con-
stant spreading coefficient follows. Finally at cholesterol
contents of about 40 % rolling of double bilayer lobes on
top of the spreading single bilayer sets in. However the
bilayer fingers fuse into the underlying lipid bilayer over

10 µm 10 µm

Fig. 7. Demonstration of line pinning for DMPC spreading
on a glass surface. The arrows in the left micrograph indicate
the location of defects compared to the same spot 30 seconds
later (right micrograph). No abrupt depinning is observed. The
obstacles are rather circumflowed.

some time and finally exhibit a single bilayer front as seen
in the previous regimes (see time sequence in Fig. 6c).

We interpret the decrease of the spreading coefficient
by a continuous dehydration of the membrane substrate
water gap. Eventually the frictional coupling to the sub-
strate becomes so strong that the inner bilayer rolling
(Fig. 2b) dominates. In fact the latter is in quantita-
tive agreement with the spreading coefficient as described
by equation (8b) using bs = 3 × 107 N s/m3 and S =

1× 10−4 J/m
2

[18,19].
It is noteworthy that both transition points coincide

with phase boundaries in the DMPC/cholesterol phase di-
agram. At 10 mol % the coexistence region of the liquid
disordered and the liquid ordered phase begins, while at
30 mol % the phase boundary to the pure liquid ordered
phase is reached [28]. Obviously the spreading behavior
of the liquid ordered phase is qualitatively different from
the single bilayer spreading, since two adjacent bilayers
seem to communicate and exchange lipid. The bilayer fin-
gers seem to slowly fuse into lowest bilayer, suggesting the
formation of stalk-like pores.

4.6 Spreading with obstacles

So far we have assumed that the advancing line interface
is straight. However real surfaces expose obstacles, which
act as pinning centers for the advancing membrane rim.
Surface heterogeneities are well known in wetting experi-
ments and manifest themselves in contact angle hysteresis
and contact line distortions [29]. Figure 7 demonstrates
the existence of pinning centers for membranes on cover
slides. The membrane contact line is retarded by defects
as indicated by arrows in Figure 7a and subsequently cir-
cumflowed by closure of the membrane behind the obsta-
cle (Fig. 7b). No depinning or rapid relaxation of the line
contour is observed.

The existence of pinning centers can be rational-
ized as submicron dust particles. However, there exists a
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Fig. 9. Two interfaces of single bilayer meet and fuse into a continuous planar membrane. In this sense a supported membrane
wetting a solid surface is self-healing.
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Fig. 8. Schematic illustration of possible imperfections after
vesicle fusion. (a) Two unruptured vesicles, (b) unruptured
vesicle blocking a continuous single bilayer (c) pinning centers
preventing the closing of a single bilayer.

fundamental difference in the way obstacles are overcome
by a membrane in contrast to classical pinning and de-
pinning of a three dimensional droplet on solids. In three
dimensions a pinned liquid interface increases the inter-
face area with the square of the length of the distortion.
An effective elastic force acts on the pinning center that
linearly increases with the length of the distortion [30].
At a certain threshold force the interface depins and the
contact line moves rapidly forward. The lipid membrane,
in contrast, forms a two-dimensional liquid with a one-
dimensional interface. The interface exhibits a line ten-
sion, that arises from the free energy cost of the micellar
shaped edge growing with the contour distortion. Hence a
pinning center experiences a constant force. This explains
the observation that no depinning exist for bilayer spread-
ing and that the obstacles are rather circumflowed.

However a large number of pinning centers should hin-
der and eventually stop membrane spreading. Simple two-
dimensional models of fluid invasion into porous media
predicting critical percolation thresholds are applicable to
the case of membrane spreading [31,32]. These models are
in particular useful, since the line interface was found to
be self-affine [10]. For a given spreading parameter stable
arcs of radius Θ/S must form between two pinning cen-
ters, whereby Θ denotes the one-dimensional line tension.
The percolation threshold of the invasion process will crit-
ically depend on the contact angle that is formed in the
plane of the solid surface between the membrane rim and
the defect. However the line deformations are most likely
not resolvable by optical microscopy, since the line tension

is estimated to be smaller than Θ = 10−10 J/m [33]. Ex-
periments to test spreading at defined pinning center are
in progress.

4.7 Self-healing and vesicle coating

A positive spreading power drives the membrane to cover
the solid until the lipid source is exhausted or the solid
is completely coated. Why then is it so difficult for
most practical purposes to obtain membrane coated sur-
faces? In previous studies the failure of vesicle fusion was
shown to be due to adsorbed but not ruptured vesicles
[11,34]. In Figure 8a this situation is sketched schemat-
ically. Adsorbed vesicles might also coexist with single
bilayer patches as a result of incomplete vesicle fusion
(Fig. 8b). Likewise the existence of a large density of
pinning centers can result in uncoated areas as shown
in Figure 8c. Spreading experiments help to estimate the
likelihood of these kind of defects. A large spreading coef-
ficient will generally also favor vesicle fusion. The experi-
ence that freshly cleaned and hydrophilized surfaces yield
better coatings by vesicle fusion is manifested in large
spreading coefficients. Cholesterol-rich membranes on the
other hand are an example, where the spreading coeffi-
cient is small but yet very good coatings can be achieved
by vesicle fusion. In this case the property of cholesterol-
rich membranes to easily fuse with each other, as seen in
spreading experiments (Fig. 6c), is the dominating effect.

Sequences of fusing membrane fronts, like the one
shown in Figure 9, have lead us think of supported
membranes as “self-healing” membranes. In principle this
means that a membrane, which is accidentally scratched
will re-seal by spreading, if some lipid reservoir exists. Yet,
in practice it can be observed, that mechanical scratches
may act as effective diffusion barriers, which prevent the
healing of the supported membrane [13,14]. This obser-
vation, however, does not conflict with the idea of a
self-healing membrane, since mechanical scratches are of-
ten accompanied by the creation of topological faults in
the solid surface around the scratch, which prevent the
membrane to heal [35,36]. On smooth surfaces the “self-
healing” property is rather desirable for example in case
of biomembranes used as coatings in electrical impedance
measurements on solid electrodes. Patch clamp experi-
ments for example often suffer from mechanical instability
of freely suspended model membranes [16]. A supported
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membrane on the other hand, which is composed to opti-
mally wet a solid electrode should exhibit good mechani-
cal stability. We found that large spreading coefficients are
not necessarily related to higher electrical resistance, e.g.
DMPC shows a larger spreading coefficient on ITO elec-
trodes but lower resistance than a 1:1 DMPC-cholesterol
mixture. But the addition of a small percentage cationic
lipid (DHDAB) increases the spreading coefficient of the
1:1 DMPC-cholesterol mixture and results in an even
higher impedance of the supported membrane [15]. Cur-
rently lipid membrane seals with specific resistance as high
as 500 k Ohm/cm

2
can be achieved on solid electrodes.

5 Conclusions

We showed that the kinetics of bilayer spreading fol-
lows a universal spreading law, which allows to com-
pare the kinetic spreading coefficients for various sur-
faces and to study the dependence on membrane com-
position. The proposed spreading model describes three
contributions to the frictional drag on a single homoge-
neous bilayer and is consistent within the set of data pre-
sented here. In particular the transition from a bilayer
sliding motion to an inner bilayer rolling distinguishes
strongly hydrated surfaces from hydrophilic but less hy-
drated surfaces. Further experiments will have to proof
the soundness of the model. More importantly the be-
havior of binary membranes strongly indicates a possible
demixing of the spreading bilayer and the bilayer in the
feeding lipid source. The observed exponential distribution
of the fluorescence tracer is an example for a steady state
redistribution, which was shown to be due to a dynamic
tension gradient in the membrane. Such effects might be
observable in many other dynamic membrane experiments
and should increase the caution necessary for quantitative
interpretation of fluorescence.

Two aspects of this work are of practical importance.
Firstly, the kinetic spreading coefficient might proof use-
ful as an indicator for the ability of supported membranes
to heal by complete wetting. And secondly the study of
surface defects on the wetting behavior of membranes is
shown to be crucial in the understanding of the self- or-
ganisation of lipid membranes on solids in general and the
electrical resistance of membranes on solid electrodes in
particular.

We thank E. Sackmann, J. Nardi and R. Merkl for helpful
discussions. This work was funded by DFG grants Ra655/2-1
and Ra655/3-1.
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